Deep Learning for Dental Hyperspectral Image Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral image classification via contextual deep learning

Because the reliability of feature for every pixel determines the accuracy of classification, it is important to design a specialized feature mining algorithm for hyperspectral image classification. We propose a feature learning algorithm, contextual deep learning, which is extremely effective for hyperspectral image classification. On the one hand, the learning-based feature extraction algorit...

متن کامل

Machine Learning for Dental Image Analysis

In order to study the application of artificial intelligence (AI) to dental imaging, we applied AI technology to classify a set of panoramic radiographs using (a) a convolutional neural network (CNN) which is a form of an artificial neural network (ANN), (b) representative image cognition algorithms that implement scale-invariant feature transform (SIFT), and (c) histogram of oriented gradients...

متن کامل

Deep Learning for Biomedical Texture Image Analysis

This paper shows promising results in the application of Convolutional Neural Networks (CNN) to biomedical imaging. Texture is often dominant in biomedical imaging and its analysis is essential to automatically obtain meaningful information. Therefore, we introduce a method using a Texture CNN for the classification of biomedical images. We test our approach on three datasets of liver tissues i...

متن کامل

Deep Learning for Medical Image Analysis

This report describes my research activities in the Hasso Plattner Institute and summarizes my PhD plan and several novel, endto-end trainable approches for analyze medical images using deep learning algorithm. In this report, as an example, we explore diffrent novel methods based on deep learning for brain abnormality detection, recognition and segmentation. This report prepared for doctoral c...

متن کامل

Active Learning for Hyperspectral Image Classification

Obtaining labeled data for supervised classification of remotely sensed imagery is expensive and time consuming. Further, manual selection of the training set is often subjective and tends to induce redundancy into the supervised classifier, thus considerably slowing the training phase. Active learning (AL) integrates data acquisition with the classifier design by ranking the unlabeled data to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Color and Imaging Conference

سال: 2019

ISSN: 2166-9635

DOI: 10.2352/issn.2169-2629.2019.27.53